Mononuclear Ruthenium and Hetero-Tetranuclear Ruthenium-Silver Complexes Containing the Unsymmetrical Bidentate Ligands $R_2P(CH_2)_nER'_2$ (n=1, 2; E=P, As) as Chelating or Bridging Units

Guido Fries, [a] Birgit Weberndörfer, [a] Kerstin Ilg, [a] and Helmut Werner*[a]

Dedicated to Professor Gerhard Roewer on the occasion of his 60th birthday

Keywords: Arene complexes / Heteronuclear complexes / Ruthenium / Silver / Unsymmetrical chelating ligands

The chelate complexes [(p-cym)RuCl(κ^2 -Ph $_2$ PCH $_2$ CH $_2$ -AstBu $_2$)]PF $_6$ (3), [(arene)RuCl(κ^2 -Ph $_2$ PCH $_2$ CH $_2$ PR $_2$)]PF $_6$ (4, 7, 8) and [(p-cym)RuCl(κ^2 -iPr $_2$ PCH $_2$ AstBu $_2$)]PF $_6$ (11) were prepared either from [(arene)RuCl(NCMe) $_2$]PF $_6$ (1, 5) or from [(arene)RuCl $_2$] $_2$ (2, 6), in the presence of NH $_4$ PF $_6$ or AgPF $_6$. The stepwise reaction of [(p-cym)RuCl $_2$] $_2$ (2) with Ph $_2$ P-CH $_2$ CH $_2$ PtBu $_2$ and AgPF $_6$ gave the hetero-tetranuclear com-

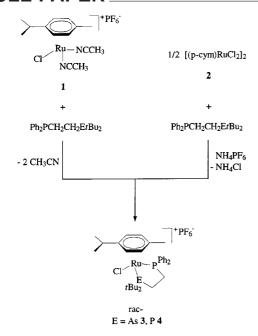
pound [{(p-cym)RuAg(μ -Cl)₂(μ - P^1_{Ru} , P^2_{Ag} - Ph_2 P¹-CH₂CH₂P²-tBu₂)}₂](PF₆)₂ (**9**), the structure of which was determined by an X-ray crystal structure analysis. The bidentate As,O donor Ph₂P(O)CH₂CH₂AstBu₂ also reacted with **2**, in the presence of AgPF₆, to afford the chelate complex [(p-cym)RuCl-{ $\kappa^2(As,O)$ -Ph₂P(O)CH₂CH₂AstBu₂}]PF₆ (**10**), which was also characterized crystallographically.

Introduction

In the search for new, possibly hemilabile, bidentate ligands, we recently described a simple and fairly general one-pot synthesis for unsymmetrical 1,2-bis(phosphanyl)ethanes and 1-arsanyl-2-phosphanylethanes with and without a stereogenic center.[1] In an initial attempt, we tested the coordination properties of one of the new ligands, Ph₂PCH₂CH₂PiPr₂, towards ruthenium(II) and prepared a series of octahedral complexes including [Ru{ $\kappa^2(O,Cl)$ -OC₆Cl₅}₂(Ph₂PCH₂CH₂PiPr₂)] in which the pentachlorophenolate anions behave as chelating ligands.^[1,2] In the last decade the chemistry of (arene)ruthenium(II) complexes has attracted a great deal of attention^[3] and so we became interested in finding out whether the compounds Ph₂PCH₂CH₂PR₂ and Ph₂PCH₂CH₂AsR₂, even with bulky substituents R such as tert-butyl or cyclohexyl, could also bind to an [(arene)RuCl]+ fragment in a chelating fashion. The present paper reports the preparation of several complexes of the general type [(arene)RuCl(L-L')]PF₆, and describes the isolation and structural characterization of a novel dicationic tetranuclear Ru₂Ag₂ compound in which two Ph₂PCH₂CH₂PtBu₂ ligands bridge the Ru^{II} and Ag^I metal centers.

Results and Discussion

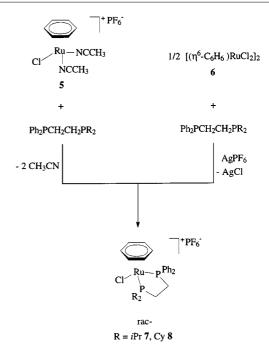
The preparation of the chelate complexes 3, 4 and 7, 8 (see Scheme 1) can be achieved by two different routes, using either the cationic bis(acetonitrile)ruthenium(II) compounds 1 and $5^{[4]}$ or the well-known (arene)ruthenium dichloride dimers 2 and 6 as the starting materials. While 1


and 5 react quite smoothly with the new unsymmetrical 1,2-bis(phosphanyl)- or 1-arsanyl-2-phosphanylethanes in acetonitrile at room temperature to give the half-sandwich-type complexes 3, 4 and 7, 8, respectively, the dimers 2 and 6 are somewhat less reactive and only in the presence of NH_4PF_6 or $AgPF_6$, in dichloromethane as solvent, do they afford the products in good yields.

Compounds 3, 4 and 7, 8 are orange, air-stable solids that are soluble in polar solvents such as CH₂Cl₂, THF, methanol, or acetone, and which have been characterized both by elemental analysis and conductivity measurements. Compared to the free ligands Ph₂PCH₂CH₂PR₂ and Ph₂PCH₂CH₂AstBu₂, the resonances in the ³¹P-NMR spectra of 3, 4, 7, and 8 are shifted to significantly lower fields, the difference in the chemical shifts being 50–90 ppm.

The unusual tetranuclear complex 9 (Scheme 2) is obtained if the reaction of 2 with Ph₂PCH₂CH₂PtBu₂ is carried out in the presence of AgPF₆ instead of NH₄PF₆. In contrast to 4, which also contains Ph₂PCH₂CH₂PtBu₂ as a ligand, the ³¹P-NMR spectrum of 9 displays, besides the signal for the PF_6^- anion, a doublet at $\delta = 28.0$ and two doublet of doublets at $\delta = 68.0$ and 67.9, which arise from the coupling of the ³¹P nuclei of the PtBu₂ unit with the silver isotopes 107Ag and 109Ag, respectively. The resulting coupling constants $J(^{31}P^{107}Ag) = 643.0 \text{ Hz}$ and $J(^{31}P^{109}Ag) = 743.3 \text{ Hz}$ are considerably larger than in a variety of (phosphane)silver(I) complexes.^[5] Similar $J(^{31}P^{107}Ag)$ and $J(^{31}P^{109}Ag)$ values (657.5 and 758.8 Hz) have recently been observed for the tris(pyrazolyl)borato compound $[\{HB[3,5-(CF_3)_2pz]_3\}Ag(PPh_3)]$ where the coordination number of AgI is four.[6]

The result of the X-ray crystal structure analysis of the cation of 9 is shown in Figure 1. The coordination sphere around the two ruthenium centers in the centrosymmetric dimer corresponds to that of a half-sandwich-type molecule


[[]a] Institut f
ür Anorganische Chemie der Universit
ät W
ürzburg Am Hubland, 97074 W
ürzburg, Germany

Scheme 1

Scheme 2

with the tridentate p-cymene, the phosphorus atom of the PPh₂ unit and the two chlorine atoms Cl1 and Cl2 occupying the six coordination sites. The geometry around the two silver centers is distorted trigonal-planar, one angle (C11-Ag2-P2A) being nearly 120° while the two others (C12-Ag2-P2A and C11-Ag2-C12) deviate significantly from the value expected for an sp²-hybridized metal atom. The distance Ag2–P2A of 2.3592(1) Å is somewhat shorter than in the anionic species [Cl(C₆Cl₅)₂Pt(μ-Cl)Ag(PPh₃)]⁻ [2.395(2) Å]^[7] and in the neutral compounds [(PPh₃)₂Ag(μ - $Cl)_2OsCl_2(\mu-Cl)_2Ag(PPh_3)_2]$ [2.452(3) and 2.455(3) Å]^[8] and $[(PPh_3)_2Ag(\mu-Cl)_2Co(\mu-Cl)_2Ag(PPh_3)_2]$ $(2.43-2.47 \text{ Å}).^{[9]}$ The most remarkable feature, however, is the short bond length Ag2-Cl2 [2.4707(18) Å], which is not only much shorter than the distance Ag2-Cl1 [2.7261(19) A] but also differs from the Ag-Cl bond lengths found in other chloride-bridged silver-metal complexes.^[7,8,9] In contrast to the distances Ag2-Cl1 and Ag2-Cl2, the bond lengths Ru1-Cl1 and Ru1-Cl2 are almost identical [2.4234(17)

and 2.4432(18) Å] and only slightly longer than those in the mononuclear compounds [(arene)RuCl₂(L)]. We note that quite recently a tetranuclear Ru₂Ag₂ complex has been reported in which an Ag(μ -iPr₂PCH₂CH₂PiPr₂)Ag fragment is linked to two phenylethynyl ligands, each of which is σ -bonded to one ruthenium center. [11]

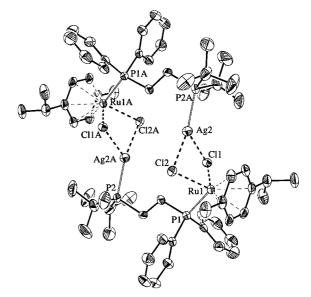


Figure 1. Molecular structure (ORTEP plot) of ${}^{\circ}\!\! 9$; the PF $_{6}^{-}$ ions are omitted for clarity; selected bond lengths [A] and angles [°]: Ru1–P1 2.3608(17), Ru1–Cl1 2.4234(17), Ru1–Cl2 2.4432(18), Ag2–Cl1 2.7261, Ag2–Cl2 2.4707(18), Ag2–P2A 2.3592(19); P1–Ru1–Cl1 84.50(6), P1–Ru1–Cl2 88.28(6), Cl1–Ru1–Cl2 87.31(6), Ru1–Cl1–Ag2 82.70(5), Ru1–Cl2–Ag2 87.88(6), Cl1–Ag2–P2A 121.69(6), Cl2–Ag2–P2A 157.48(6), Cl1–Ag2–Cl2 80.39(5)

The observation that not only the 1,2-bis(phosphanyl)-ethanes $Ph_2PCH_2CH_2PR_2$ (R = iPr, tBu, Cy) but also the As,P counterpart $Ph_2PCH_2CH_2AstBu_2$ is easily oxidized to

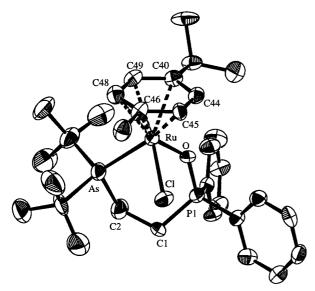


Figure 2. Molecular structure (ORTEP plot) of **10**; the PF₆⁻ ion is omitted for clarity; selected bond lengths [A] and angles [°]: Ru-As 2.5490(11), Ru-O 2.141(5), Ru-C1 2.386(2), P1-O 1.510(5), Ru-C40 2.215(7), Ru-C44 2.201(8), Ru-C45 2.198(8), Ru-C46 2.212(7), Ru-C48 2.171(8), Ru-C49 2.176(7); As-Ru-O 83.49(13), As-Ru-C1 87.67(6), C1-Ru-O 88.19(14), Ru-O-P1 135.7(3), Ru-As-C2 111.7(2), As-C2-C1 116.2(6), P1-C1-C2 110.0(6), O-P1-C1 113.9(3)

the corresponding oxide Ph₂P(O)CH₂CH₂AstBu₂, prompted us to use this molecule as a ligand in (arene)ruthenium(II) chemistry. Treating a solution of the oxide Ph₂P(O)CH₂CH₂AstBu₂, generated in situ from the precursor Ph₂PCH₂CH₂AstBu₂ and molecular oxygen, with a solution of 2 in CH₂Cl₂, in the presence of one equivalent of AgPF₆, leads to the formation of the PF₆ salt of the cationic complex 10 (Scheme 3) in which the oxophosphorane forms a six-membered chelate ring with the metal center. The dark-red solid is air-stable and readily soluble in THF, nitromethane and methanol. The resonance in the ³¹P-NMR spectrum of **10** appears at $\delta = 53.8$ and is shifted by ca. 17 ppm upfield compared to the corresponding signal for 3. In the latter compound the nonoxidized ligand Ph₂PCH₂CH₂AstBu₂ is coordinated to the ruthenium center rather than Ph₂P(O)CH₂CH₂AstBu₂.

The molecular structure of the cation of 10 is shown in Figure 2. The single crystals, which were grown from a solution in methanol, contained only one enantiomer of the cationic (arene)ruthenium complex in which, owing to the calculated structural parameter x of -0.025(15), the asymmetric metal center possesses the (R) configuration. In analogy to the situation in 9, the coordination geometry around the ruthenium center is pseudo-octahedral with the arsenic, the oxygen and the chlorine atoms bonded opposite to the tridentate p-cymene ligand. The distance Ru-Cl [2.386(2)

Scheme 3

A] is ca. 0.05 A shorter than the two Ru-Cl bond lengths in 9 but quite similar to the Ru-Cl distances found in other cationic (arene)(chloro)ruthenium(II) complexes.[13] The Ru-As bond length [2.5490(11) Å] is slightly longer than the average Ru-As distance in the neutral compounds $[2.458-2.504 \text{ Å}]^{[14]}$ trans-[RuI₂(AsMe₂Ph)₄] $[RuCl_2(CO)_2(AsPh_3)_2]$ [2.4927(6) Å, 2.4855(6) Å], [15] where six monodentate ligands are bonded to the ruthenium(II) ion. The distances Ru-O and P1-O are nearly the same as in the related cations $[(p-\text{cym})\text{RuCl}\{\kappa^2(P,O)-\text{Ph}_2P(O$ CH₂PPh₂}]⁺ and $[(p\text{-cym})\text{RuCl}\{\kappa^2(P,O)\text{-Ph}_2\text{P}(O)\text{CH}\text{-}$ (CH₃)PPh₂}]⁺, which were quite recently prepared by Faller et al. and structurally characterized as the SbF₆⁻ salts.^[16]

To compare the ligand behavior of 1-arsanyl-2-phosphanylethanes and (arsanyl)(phosphanyl)methanes, the reaction of the starting material 2 with iPr₂PCH₂AstBu₂ was also carried out. After heating the two substrates in eththe cationic complex $[(p-\text{cym})\text{RuCl}\{\kappa^2$ iPr₂PCH₂AstBu₂}]⁺ with chloride as the counterion was formed, which upon salt metathesis with NH₄PF₆ gave 11 in 80% yield (Scheme 4). Similarly to 3, compound 11 is a yellow air-stable solid that is soluble in polar solvents and, in nitromethane, shows the conductivity of a 1:1 electrolyte. The chemical shift of the singlet resonance in the ³¹P-NMR spectrum of 11 indicates a chelate coordination of the unsymmetrical bidentate As,P ligand to the ruthenium center.[17] In agreement with the structural proposal, the ¹H-NMR spectrum of 11 displays two signals at $\delta = 3.41$ and 3.22 for the CH₂ protons of the AsCH₂P unit and, due to P-H and H-H couplings, these are split into doublets of doublets.

Scheme 4

Conclusions

The work presented in this paper has shown that 1,2-bis(phosphanyl)ethanes as well as 1-arsanyl-2-phosphanyl-ethanes, regardless of the bulk of the PR₂ or AsR₂ units, prefer to coordinate to a cationic [(arene)RuCl]⁺ fragment in a chelating fashion. Only in the presence of silver(I) as an additional metal center was a heteronuclear Ru₂Ag₂ complex isolated and, in this case, the unsymmetrical bidentate ligand Ph₂PCH₂CH₂PtBu₂ binds in a bridging mode. Although four-membered chelate rings are generally less favored than five-membered rings, the methane derivat-

ive $iPr_2PCH_2AstBu_2$, like $Ph_2PCH_2CH_2AstBu_2$, generates a chelate complex with $[(p-cym)RuCl]^+$ as a building block.

Experimental Section

All operations were carried out under argon using Schlenk techniques. The starting materials **1**, **5**,^[4] **2** and **6**^[18] as well as the ligands $iPr_2PCH_2AstBu_2$, ^[19] $Ph_2PCH_2CH_2AstBu_2$ and $Ph_2PCH_2CH_2PR_2$ (R = iPr, tBu, Cy)^[1,2] were prepared as described in the literature. – NMR: Bruker AC 200 and AMX 400. – Conductivity measurements (in nitromethane): Schott conductometer CG 851. – Melting points determined by DTA.

1. Preparation of [(p-cym)RuCl(κ²-Ph₂PCH₂CH₂AstBu₂)]PF₆ (3): (a) A solution of 120 mg (0.2 mmol) of 1 in 3 mL of CH₃CN was treated dropwise with a solution of 97 mg (0.2 mmol) of Ph₂PCH₂CH₂AstBu₂ in 3 mL of CH₃CN at room temperature. A change of color from yellow to orange occurred. The solution was concentrated to dryness in vacuo, the residue was washed with 5 mL of pentane and dried. An orange microcrystalline solid was obtained; yield 128 mg (65%). - (b) A suspension of 133 mg (0.2 mmol) of 2 in 5 mL of CH₂Cl₂ was treated with 177 mg (0.4 mmol) of Ph₂PCH₂CH₂AstBu₂ and stirred for 2 h at room temperature. A solution of 72 mg (0.4 mmol) of NH₄PF₆ in 3 mL of CH₂Cl₂ was added and the resulting reaction mixture was stirred for 2 h and then filtered. The filtrate was concentrated to dryness in vacuo, the residue was washed with 10 mL of ether and dried. An orange microcrystalline solid was obtained; yield 216 mg (60%); m.p. 145 °C (dec.). – Conductivity $\Lambda = 74.3 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. – ¹H NMR (400 MHz, CD_2Cl_2): $\delta = 7.65 - 7.30$ (m, 10 H, C_6H_5), 6.50 [d, 1 H, J(HH) = 5.8 Hz, $1 \times H$ of C_6H_4], 6.37, 5.85 [both d, 1 H each, J(HH) = 6.2 Hz, $2 \times H$ of C_6H_4], 5.64 [d, 1 H, J(HH) =5.8 Hz, 1 \times H of C₆H₄], 3.28-3.23 (br m, 1 H, 1 \times H of PCH_2CH_2As), 2.76 [sept, 1 H, J(HH) = 7.0 Hz, $CH_3C_6H_4CH(CH_3)_2$], 2.50-2.43, 2.31-2.22, 1.91-1.82 (each br m, 3 H, 3 × H of PCH₂CH₂As), 1.52, 1.36 (both s, 9 H each, AsCCH₃), 1.35, 1.30 [both d, 3 H each, J(HH) = 7.0 Hz, $CH_3C_6H_4CH(CH_3)_2$], 1.04 [s, 3 H, $CH_3C_6H_4CH(CH_3)_2$]. – ¹³C NMR (100.6 MHz, CD_2Cl_2): $\delta = 135.5$ [d, J(PC) = 42.9 Hz, ipso-C of C_6H_5], 134.0 [d, J(PC) = 8.6 Hz, C_6H_5], 133.1 [d, J(PC) =58.2 Hz, *ipso-C* of C_6H_5], 131.8 [d, J(PC) = 8.6 Hz, C_6H_5], 131.6 [d, J(PC) = 5.7 Hz, C_6H_5], 131.6 (s, C_6H_5), 129.6 [d, J(PC) =9.5 Hz, C_6H_5], 129.0 [d, J(PC) = 10.5 Hz, C_6H_5], 126.1 [d, J(PC) =5.7 Hz, C_6H_4], 98.4, 92.3, 89.7, 89.0 (all s, C_6H_4), 86.2 [d, J(PC) =8.6 Hz, C₆H₄], 46.7, 42.0 (both s, AsCCH₃), 32.0 (s, AsCCH₃), 30.6 [s, $CH_3C_6H_4CH(CH_3)_2$], 30.1 (s, $AsCCH_3$), 29.8 [d, J(PC) =35.3 Hz, PCH₂CH₂As], 22.8, 20.8 [both s, CH₃C₆H₄CH(CH₃)₂], 19.3 [d, J(PC) = 8.6 Hz, PCH_2CH_2As], 15.3 $CH_3C_6H_4CH(CH_3)_2$]. - ³¹P NMR (162.0 MHz, CD_2Cl_2): δ = 71.1 (s, Ph_2P), -144.3 [sept, J(FP) = 710.6 Hz, PF_6^-]. $-C_{32}H_{46}AsCl$ F₆P₂Ru (818.1): calcd. C 46.98, H 5.67; found C 46.43, H 5.15.

2. Preparation of [(*p***-cym)RuCl(κ²-Ph₂PCH₂CH₂PtBu₂)]PF₆ (4):** (a) In an analogous way to that described for **3** [method (a)] using 174 mg (0.4 mmol) of **1** and 127 mg (0.4 mmol) of Ph₂PCH₂CH₂PtBu₂ as starting materials. Yield 203 mg (75%). – (b) In an analogous way to that described for **3** [method (b)] using 162 mg (0.3 mmol) of **2**, 191 mg (0.5 mmol) of Ph₂PCH₂CH₂PtBu₂ and 86 mg (0.5 mmol) of NH₄PF₆ as starting materials. Orange microcrystalline solid; yield 287 mg (70%); m.p. 152 °C (dec.). – Conductivity $\Lambda = 61.8 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. – ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.68 - 7.35$ (m, 10 H, C₆H₅), 6.45, 6.18, 5.95, 5.46 [all d, 1 H each, J(HH) = 6.2 Hz, C₆H₄], 3.31–3.19 (br m, 2 H,

PCH₂CH₂P), 2.81-2.77 (br m, 1 H, PCHCH₃), 2.60-2.42 (br m, 3 H, PCH₂CH₂P and PCHCH₃), 2.20 [s, 3 H, CH₃C₆H₄CH(CH₃)₂], 1.60-1.10 [m, 24 H, $CH_3C_6H_4CH(CH_3)_2$ and $PCCH_3$]. - ^{13}C NMR (100.6 MHz, CD_2Cl_2): $\delta = 136.0$ [d, J(PC) = 11.4 Hz, C_6H_5], 132.8 (m, C_6H_5), 131.0 [d, J(PC) = 2.9 Hz, C_6H_5], 129.8 [d, $J(PC) = 41.0 \text{ Hz}, C_6H_5$, 128.8, 128.3 [both d, J(PC) = 10.5 Hz, C_6H_5], 125.8, 102.9 (both s, C_6H_4), 93.0 [d, J(PC) = 3.8 Hz, C_6H_4], $92.2 \text{ [d, } J(PC) = 2.9 \text{ Hz, } C_6H_4], 91.9, 90.3 \text{ [both d, } J(PC) = 6.7 \text{ Hz,}$ C_6H_4], 36.8 [dd, $J(P^1C) = 25.7$, $J(P^2C) = 14.3$ Hz, PCH_2CH_2P], 35.2 [dd, $J(P^1C) = 31.9$, $J(P^2C) = 10.0$ Hz, PCH_2CH_2P], 31.3 [s, $CH_3C_6H_4CH(CH_3)_2$, 28.5 [d, J(PC) = 25.7 Hz, $PCCH_3$], 27.7 [d, $J(PC) = 20.0 \text{ Hz}, PCCH_3], 22.4 [s, CH_3C_6H_4CH(CH_3)_2], 21.7 [d,$ $J(PC) = 2.9 \text{ Hz}, PCCH_3$, 20.9 [s, $CH_3C_6H_4CH(CH_3)_2$], 20.7 [d, $J(PC) = 3.9 \text{ Hz}, PCCH_3$, 20.2 [s, $CH_3C_6H_4CH(CH_3)_2$]. $- {}^{31}P$ NMR (162.0 MHz, CD_2Cl_2): $\delta = 85.2$ [d, J(PP) = 33.1 Hz, tBu_2P], 78.3 [d, J(PP) = 33.1 Hz, Ph_2P], -144.9 [sept, J(FP) = 709.5 Hz, PF₆⁻]. - C₃₂H₄₆ClF₆P₃Ru (774.2): calcd. C 49.65, H 5.99; found C 49.64, H 5.76.

3. Preparation of $[(\eta^6-C_6H_6)RuCl(\kappa^2-Ph_2PCH_2CH_2PiPr_2)]PF_6$ (7): (a) In an analogous way to that described for 3 [method (a)], by using 163 mg (0.4 mmol) of 5 and 129 mg (0.4 mmol) of Ph₂PCH₂CH₂PiPr₂ as starting materials. Yield 207 mg (77%). – (b) A suspension of 273 mg (0.6 mmol) of 6 in 8 mL of CH₃CN was treated with 361 mg (1.1 mmol) of Ph₂PCH₂CH₂PiPr₂ and 258 mg (1.1 mmol) of AgPF₆ and stirred for 2 h at 60 °C. Upon cooling to room temperature, the solvent was removed in vacuo and the residue was extracted with 10 mL of CH₂Cl₂. The extract was then concentrated to dryness in vacuo, the residue was washed with 10 mL of ether and dried. An orange microcrystalline solid was obtained; yield 570 mg (75%); m.p. 148 °C (dec.). - Conductivity $\Lambda = 69.8 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. $- {}^{1}\text{H NMR (400 MHz, CD}_{2}\text{Cl}_{2})$: $\delta =$ 7.78 - 7.12 (m, 10 H, C_6H_5), 5.86 (s, 6 H, C_6H_6), 2.70 – 1.83 (br m, 6 H, PCH_2CH_2P and $PCHCH_3$), 1.37 [dd, 6 H, J(PH) = 15.8, $J(HH) = 7.9 \text{ Hz}, PCHCH_3$, 1.28 [dd, 3 H, J(PH) = 15.1, J(HH) =7.2 Hz, PCHC H_3], 1.22 [dd, 3 H, J(PH) = 14.4, J(HH) = 7.0 Hz, $PCHCH_3$]. - ¹³C NMR (100.6 MHz, CD_2Cl_2): $\delta = 135.5$ [d, $J(PC) = 47.8 \text{ Hz}, ipso-C \text{ of } C_6H_5$], 133.9, 133.3 [both d, J(PC) =9.2 Hz, C_6H_5], 131.6, 129.9 [both d, J(PC) = 10.2 Hz, C_6H_5], 129.2, 129.1 [both d, J(PC) = 11.1 Hz, C_6H_5], 93.4 [d, J(PC) = 2.0 Hz, C_6H_6], 31.6 [d, J(PC) = 24.4 Hz, $PCHCH_3$], 26.6 [d, J(PC) =26.4 Hz, PCHCH₃], 26.6 [dd, $J(P^1C) = 35.6$, $J(P^2C) = 8.1$ Hz, PCH_2CH_2P], 21.3 [dd, $J(P^1C) = 30.0$, $J(P^2C) = 10.7$ Hz, PCH_2CH_2P], 20.6 (s, $PCHCH_3$), 19.7 [d, J(PC) = 2.0 Hz, $PCHCH_3$], 19.4 (s, $PCHCH_3$), 18.8 [d, J(PC) = 3.0 Hz, $PCHCH_3$]. - ³¹P NMR (162.0 MHz, CD₂Cl₂): δ = 86.9 [d, J(PP) = 32.7 Hz, iPr_2P], 70.0 [d, J(PP) = 32.7 Hz, Ph_2P], -144.3 [sept, J(FP) =710.6 Hz, PF₆⁻]. - C₂₆H₃₄ClF₆P₃Ru (690.0): calcd. C 45.26, H 4.97; found C 44.98, H 5.06.

4. Preparation of [(η⁶-C₆H₆)RuCl(κ²-Ph₂PCH₂CH₂PCy₂)]PF₆ (8): (a) In an analogous way to that described for 3 [method (a)], by using 120 mg (0.3 mmol) of **5** and 119 mg (0.3 mmol) of Ph₂PCH₂CH₂PCy₂ as starting materials. Yield 270 mg (78%). – (b) In an analogous way to that described for **7** [method (b)], by using 225 mg (0.5 mmol) of **6**, 370 mg (0.9 mmol) of Ph₂PCH₂CH₂PCy₂ and 227 mg (0.9 mmol) of AgPF₆ as starting materials. Orange microcrystalline solid; yield 520 mg (75%); m.p. 131 °C (dec.). – Conductivity $\Lambda = 71.6 \text{ cm}^2\Omega^{-1}\text{mol}^{-1}$. – ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.72-7.18$ (m, 10 H, C₆H₅), 5.92 (s, 6 H, C₆H₆), 2.84–2.72 (m, 2 H, PCH₂CH₂P), 2.42–2.23 (m, 2 H, PCH₂CH₂P), 2.20–1.15 (br m, 22 H, CH and CH₂ of C₆H₁₁). – ¹³C NMR (100.6 MHz, CD₂Cl₂): $\delta = 135.5$ [d, J(PC) = 48.6 Hz, ipso-C of C₆H₅], 133.8, [d, J(PC) = 9.5 Hz, C₆H₅], 132.0, 131.9 [both d,

 $J(PC) = 2.9 \text{ Hz}, C_6 H_5], 131.7 \text{ [d, } J(PC) = 9.5 \text{ Hz}, C_6 H_5], 130.4 \text{ [d, } J(PC) = 54.3 \text{ Hz}, ipso-C \text{ of } C_6 H_5], 129.9 \text{ [d, } J(PC) = 9.5 \text{ Hz}, C_6 H_5], 129.1 \text{ [d, } J(PC) = 10.5 \text{ Hz}, C_6 H_5], 93.3 \text{ (s, } C_6 H_6), 42.9 \text{ [d, } J(PC) = 21.9 \text{ Hz}, \text{ CH of } C_6 H_{11}], 37.1 \text{ [d, } J(PC) = 25.7 \text{ Hz}, \text{ CH of } C_6 H_{11}], 30.7, 30.0, 29.9, 29.8 \text{ (all s, } CH_2 \text{ of } C_6 H_{11}), 29.4 \text{ [d, } J(PC) = 4.8 \text{ Hz}, \text{ CH}_2 \text{ of } C_6 H_{11}], 28.1 \text{ [d, } J(PC) = 13.4 \text{ Hz}, \text{ CH}_2 \text{ of } C_6 H_{11}], 27.4 \text{ [d, } J(PC) = 9.5 \text{ Hz}, \text{ CH}_2 \text{ of } C_6 H_{11}], 27.7, 27.1 \text{ [both d, } J(PC) = 10.5 \text{ Hz}, \text{ CH}_2 \text{ of } C_6 H_{11}], 26.6 \text{ [dd, } J(P^1C) = 35.3, J(P^2C) = 6.7 \text{ Hz}, PCH_2 \text{ CH}_2 \text{ P]}, 26.2 \text{ [d, } J(PC) = 10.5 \text{ Hz}, \text{ CH}_2 \text{ of } C_6 H_{11}], 20.3 \text{ [dd, } J(P^1C) = 30.5, J(P^2C) = 10.5 \text{ Hz}, PCH_2 CH_2 P]. - $^{31}P \text{ NMR} (162.0 \text{ MHz}, \text{ CD}_2 \text{ Cl}_2): δ = 79.2 \text{ [d, } J(PP) = 30.5 \text{ Hz}, \text{ Cy}_2 \text{ P]}, 70.2 \text{ [d, } J(PP) = 30.5 \text{ Hz}, \text{ Ph}_2 \text{ P}], -142.1 \text{ [sept, } J(FP) = 710.6 \text{ Hz}, \text{ PF}_6^-]. - C_{32}H_{42}\text{ ClF}_6 P_3\text{Ru} (770.1): \text{ calcd. C 49.91, H 5.50; found C 49.46, H 5.86.}$

- 5. Preparation of $[(p-\text{cym})\text{RuAg}(\mu-\text{Cl})_2(\mu-P_{\text{Ru}}^1,P_{\text{Ag}}^2-\text{Ph}_2\text{P}^1\text{CH}_2 CH_2P^2tBu_2|_{2}(PF_6)_2$ (9): A solution of 245 mg (0.4 mmol) of 1 and 286 mg (0.8 mmol) of Ph₂PCH₂CH₂PtBu₂ in 5 mL of CH₂Cl₂ was stirred for 1 h and then treated dropwise with a solution of 198 mg (0.8 mmol) of AgPF₆ in 3 mL of CH₂Cl₂. After 1 h of stirring at room temperature, the resulting reaction mixture was filtered. The filtrate was concentrated to dryness in vacuo, the residue was washed with 10 mL of pentane and dried. A red microcrystalline solid was obtained; yield 701 mg (95%); m.p. 204 °C (dec.). $-\ ^1H$ NMR (400 MHz, CD_2Cl_2): $\delta = 7.78$ (m, 4 H, C_6H_5), 7.58 (m, 6 H, C_6H_5), 5.44, 5.25 [both d, 4 H, J(HH) = 5.0 Hz, C_6H_4], 2.63-2.52 (m, 2 H, PC H_2 CH $_2$ P), 2.22 [sept, 1 H, J(HH) = 7.0 Hz, $CH_3C_6H_4CH(CH_3)_2$], 1.33-1.19 (br m, 2 H, PCH_2CH_2P), 1.04 [s, 3 H, $CH_3C_6H_4CH(CH_3)_2$], 0.98 [d, 18 H, J(PH) = 15.0 Hz, $PCCH_3$], 0.77 [d, 3 H, J(HH) = 6.8 Hz, $CH_3C_6H_4CH(CH_3)_2$], 0.73 [d, 3 H, J(HH) = 7.0 Hz, $CH_3C_6H_4CH(CH_3)_2$]. $- {}^{13}C \text{ NMR}$ $(100.6 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: $\delta = 132.9 \text{ [d, } J(\text{PC}) = 9.5 \text{ Hz, } \text{C}_6\text{H}_5\text{]}, 132.5$ [d, J(PC) = 3.5 Hz, C_6H_5], 129.7 [d, J(PC) = 44.8 Hz, ipso-C of C_6H_5], 129.7 [d, J(PC) = 9.5 Hz, C_6H_5], 108.8, 95.6 [both s, C_6H_4], 91.4 [d, $J(PC) = 3.8 \text{ Hz}, C_6H_4$], 86.4 [d, $J(PC) = 4.8 \text{ Hz}, C_6H_4$], 34.2 [dd, $J(P^1C) = 11.0$, $J(P^2C) = 5.2$ Hz, $PCCH_3$], 31.0 [s, $CH_3C_6H_4CH(CH_3)_2$, 29.4 [d, J(PC) = 6.7 Hz, $PCCH_3$], 25.4 [dd, $J(P^{1}C) = 21.5$, $J(P^{2}C) = 15.7$ Hz, $PCH_{2}CH_{2}P$, 21.2, 17.8 [both s, $CH_3C_6H_4CH(CH_3)_2$ and $CH_3C_6H_4CH(CH_3)_2$, 13.9 PCH_2CH_2P). - ³¹P NMR (162 MHz, CD_2Cl_2): $\delta = 68.0$ [dd, ${}^{1}J({}^{109}\text{AgP}) = 743.3 \text{ Hz}, J(PP) = 39.2 \text{ Hz}, tBu_{2}P], 67.9 \text{ [dd,}$ ${}^{1}J({}^{107}\text{AgP}) = 643.0 \text{ Hz}, J(PP) = 39.2 \text{ Hz}, tBu_{2}P], 28.0 \text{ [d, } J(PP) =$ $39.2 \text{ Hz}, \text{ Ph}_2\text{P}, -144.3 \text{ [sept, } J(\text{FP}) = 710.8 \text{ Hz}, \text{ PF}_6^-].$ C₆₄H₉₂Ag₂Cl₄F₁₂P₆Ru₂ (1835): calcd. C 41.89, H 5.05, Ag 11.76; found C 41.87, H 5.33, Ag 11.63.
- 6. Preparation of $[(p-\text{cym})\text{RuCl}\{\kappa^2(\text{As,O})-\text{Ph}_2\text{P}(\text{O})\text{CH}_2\text{CH}_2-\text{CH}_2)$ $AstBu_2$]PF₆ (10): A solution of 214 mg (0.5 mmol) of Ph₂PCH₂CH₂AstBu₂ in 10 mL of CH₂Cl₂ was treated with oxygen for ca. 10 min at room temperature and then added to a solution of 165 mg (0.3 mmol) of 1 in 4 mL of CH₂Cl₂. After 1 h of stirring, a solution of 132 mg (0.5 mmol) of AgPF₆ in 3 mL of CH₂Cl₂ was added dropwise. The resulting reaction mixture was stirred for 20 min and then filtered. The filtrate was concentrated to dryness in vacuo, the residue was washed twice with 4 mL of cold methanol and dried. A dark-red microcrystalline solid was obtained; yield 199 mg (45%); m.p. 131 °C (dec.). $- {}^{1}H$ NMR (200 MHz, CD₂Cl₂): $\delta = 7.75 - 7.26$ (m, 10 H, C₆H₅), 6.53 [d, 1 H, J(HH) = 5.8 Hz, 1 \times H of C₆H₄], 6.39, 5.89 [both d, 1 H each, J(HH) = 6.4 Hz, 2 \times H of C_6H_4], 5.62 [d, 1 H, J(HH) = 6.1 Hz, 1 × H of C_6H_4], 3.30-3.20 (br m, 1 H, 1 × H of PCH₂CH₂As), 2.74 [sept, 1 H, $J(HH) = 7.1 \text{ Hz}, \text{ CH}_3\text{C}_6\text{H}_4\text{C}H(\text{CH}_3)_2], 2.52-2.46, 2.35-2.21,$ 1.89-1.82 (all br m, 3 H, PCH₂CH₂As), 1.51, 1.34 (both s, 9 H each, AsCCH₃), 1.33, 1.30 [both d, 3 H each, J(HH) = 7.1 Hz,

CH₃C₆H₄CH(CH₃)₂], 1.10 [s, 3 H, CH₃C₆H₄CH(CH₃)₂]. - ¹³C NMR (50.3 MHz, CD₂Cl₂): δ = 142.5 [d, J(PC) = 43.9 Hz, ipso-C of C₆H₅], 135.0 [d, J(PC) = 8.4 Hz, C₆H₅], 134.3 [d, J(PC) = 52.2 Hz, ipso-C of C₆H₅], 132.8 [d, J(PC) = 8.4 Hz, C₆H₅], 131.6 [d, J(PC) = 5.8 Hz, C₆H₅], 131.5 (s, C₆H₅), 129.4 [d, J(PC) = 9.5 Hz, C₆H₅], 129.0 [d, J(PC) = 10.5 Hz, C₆H₅], 125.8 [d, J(PC) = 4.7 Hz, C₆H₄], 97.4, 92.6, 89.9, 89.1 (all s, C₆H₄), 87.2 [d, J(PC) = 8.7 Hz, C₆H₄], 46.5, 42.3 (both s, AsCCH₃), 32.3 (s, AsCCH₃), 30.4 [s, CH₃C₆H₄CH(CH₃)₂], 31.8 [d, J(PC) = 30.3 Hz, PCH₂CH₂As], 30.1 (s, AsCCH₃), 22.5, 21.3 [both s, CH₃C₆H₄CH(CH₃)₂], 20.3 [d, J(PC) = 6.6 Hz, PCH₂CH₂As], 14.8 [s, CH₃C₆H₄CH(CH₃)₂]. - ³¹P NMR (81 MHz, CD₂Cl₂): δ = 53.8 [s, Ph₂P(O)], -144.2 [sept, J(FP) = 710.8, PF₆-]. - C₃₂H₄₆AsClF₆OP₂Ru (834.1): calcd. C 46.08, H 5.56; found C 45.56, H 5.15.

7. Preparation of $[(p-\text{cym})\text{RuCl}(\kappa^2-i\text{Pr}_2\text{PCH}_2\text{As}t\text{Bu}_2)]\text{PF}_6$ (11): A solution of 32 mg (0.1 mmol) of 2 in 5 mL of ethanol was treated with a solution of 67 mg (0.2 mmol) of iPr₂PCH₂AstBu₂ in 5 mL of ethanol and the mixture stirred under reflux for 24 h. Upon cooling to room temperature, 17 mg (0.1 mmol) of NH₄PF₆ was added to the reaction mixture. After 10 min of stirring, the solvent was removed in vacuo, the residue was washed three times with 10 mL of pentane and dried. A yellow solid was obtained; yield 75 mg (80%); m.p. 86 °C. – Conductivity $\Lambda = 70.2 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. $- {}^{1}$ H NMR (400 MHz, CDCl₃): $\delta = 6.34$ [d, 1 H, J(HH) = 5.3 Hz, $1 \times H \text{ of } C_6H_4$, 6.14 [d, 1 H, J(HH) = 5.8 Hz, $1 \times H \text{ of } C_6H_4$], 6.08 [d, 1 H, J(HH) = 5.9 Hz, 1 × H of C₆H₄], 5.28 [d, 1 H, $J(HH) = 5.3 \text{ Hz}, 1 \times H \text{ of } C_6H_4$, 3.41 [dd, 1 H, J(PH) = 15.0, $J(HH) = 9.9 \text{ Hz}, 1 \times H \text{ of PCH}_2\text{As}, 3.22 \text{ [dd, 1 H, } J(PH) = 14.8,$ $J(HH) = 9.9 \text{ Hz}, 1 \times H \text{ of PCH}_2\text{As}, 2.57, 2.65, 2.77 [all m, 1 H]$ each, PCHCH₃ and CH₃C₆H₄CH(CH₃)₂], 2.19 [s, 3 H, $CH_3C_6H_4CH(CH_3)_2$, 1.56 [dd, 3 H, J(PH) = 16.1, J(HH) = 16.17.3 Hz, PCHCH₃], 1.46, 1.40 (both s, 9 H each, AsCCH₃), 1.32 [dd, 3 H, J(PH) = 11.4, J(HH) = 7.2 Hz, $PCHCH_3$], 1.29 [dd, 3 H, J(PH) = 10.8, J(HH) = 6.9 Hz, $PCHCH_3$, 1.27 [dd, 3 H, J(PH) = 9.7, J(HH) = 7.3 Hz, $PCHCH_3$, 1.25 [d, 3 H, J(HH) =7.1 Hz, $CH_3C_6H_4CHCH_3$], 1.19 [d, 3 H, J(HH) = 7.0 Hz, $CH_3C_6H_5CHCH_3$]. - ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 124.0$ $[d, J(PC) = 5.7 \text{ Hz}, C_6H_4], 95.4, 88.3, 88.1 \text{ (all s, } C_6H_4), 84.4 \text{ [d, }$ $J(PC) = 7.6 \text{ Hz}, C_6H_4$, 82.9 (s, C_6H_4), 45.6 [d, J(PC) = 6.7 Hz, $AsCCH_3$, 39.4 (s, $AsCCH_3$), 31.8 (s, $AsCCH_3$), 31.7 [d, J(PC) =19.0 Hz, PCH₂As], 29.4 [s, CH₃C₆H₄CH(CH₃)₂], 28.4 (s, AsCCH₃), 27.0, 27.2 [both d, J(PC) = 17.9 Hz, $PCHCH_3$], 22.4 [s, CH₃C₆H₄CH(CH₃)₂], 18.8, 19.0, 19.8, (all s, PCHCH₃), 17.5 [d, $J(PC) = 2.9 \text{ Hz}, PCHCH_3$, 17.3 [s, $CH_3C_6H_4CH(CH_3)_2$]. $- {}^{31}P$ NMR (162 MHz, CDCl₃): $\delta = 19.3$ (s, $PiPr_2$), -142.1 [sept, $J(FP) = 710.6 \text{ Hz}, PF_6^-$]. - $C_{25}H_{48}AsClF_6P_2Ru$ (736.0): calcd. C 40.80, H 6.57; found C 40.53, H 6.29.

X-ray Structure Determination of Compounds 9 and 10:^[20] Single crystals of **9** were grown from acetone/methanol at 25 °C and those of **10** from methanol at 25 °C. Crystal data collection parameters for these structures are presented in Table 1. The data were collected with an Enraf–Nonius CAD4 diffractometer (9) and with a Stoe IPDS diffractometer using monochromated Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$). Intensity data were corrected for Lorentz and polarization effects. The structures were solved by direct methods (**10**) with SHELXS-97.^[21] All structures were refined by full-matrix least-squares procedures on F^2 using SHELXL-97.^[22] The positions of all hydrogen atoms were calculated according to ideal geometry and were refined by employing the riding method. For **10** the Flack parameter was refined to a value of $-0.025(15)^{[12]}$ and the extinction coefficient was refined to 0.00116(10).

Table 1. Crystal data for complexes 9 and 10

	9	10
Formula M Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [A³] Temperature [K] Z D_c [g cm ⁻³] μ [mm ⁻¹]	9 C ₆₄ H ₉₂ Ag ₂ Cl ₄ F ₁₂ P ₆ Ru ₂ 1834.9 triclinic P(\bar{1}\) (no. 2) 10.383(4) 14.144(5) 15.424(6) 95.67(2) 108.36(2) 103.54(2) 2053.3(14) 193(2) 2 1.560 1.146	10 C ₃₂ H ₄₆ AsClF ₆ OP ₂ Ru 834.1 orthorhombic Pna2 (1) (no.33) 19.770(4) 12.180(2) 14.510(3) 90 90 90 3494(1) 173(2) 4 1.586 1.614
No. reflections measured No. unique reflections (R_{int}) $R1^{[a]}$	8514 7202 (0.0352) 0.0810	18919 6072 (0.0882) 0.0408
$wR2^{[b]}$	0.1270	0.0774

[a] $R = \Sigma |F_0 - F_c|/\Sigma F_0$ [for $F_0 > 2 \sigma(F_0)$] for the number of observed reflections $[I > 2\sigma(I)]$, respectively. - [b] $wR_2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^{1/2}$; $w^{-1} = [\sigma^2(F_0^2) + (0.0452 P)^2 + 7.7438P]$ (9), $[\sigma^2(F_0^2) + (0.0111P)^2 + 0.0000P]$ (10), where $P = (F_0^2 + 2F_c^2)/3$; for all data reflections, respectively.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 347) and the Fonds der Chemischen Industrie. We are grateful to the latter in particular for a Ph.D. scholarship (to K. I.). Moreover, we thank S. Link for committed collaboration during an advanced study course. We also thank Dr. W. Buchner and Mrs. M.-L. Schäfer for NMR measurements, Mrs. R. Schedl and Mr. C. P. Kneis for elemental analysis and DTA measurements. Generous support by the BASF AG and the Degussa-Hüls AG is also gratefully acknowledged.

- [1] G. Fries, J. Wolf, M. Pfeiffer, D. Stalke, H. Werner, Angew. Chem. 2000, 112, 575-577; Angew. Chem. Int. Ed. 2000, 39, 564-566.
- [2] G. Fries, Dissertation, Universität Würzburg, 2000.
- [3] [3a]H. Le Bozec, D. Touchard, P. H. Dixneuf, Adv. Organomet. Chem. 1989, 29, 163–247. [3b]M. A. Bennett, in: Comprehensive Organometallic Chemistry, vol. 7 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, New York, 1995, chapter 9. [3c]R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97–102.
- [4] [4a]D. E. Fogg, B. R. James, J. Organomet. Chem. 1993, 462,
 C21-C23. [4b]F. B. McCormick, D. D. Cox, W. B. Gleason,
 Organometallics 1993, 12, 610-612.
- [5] R. J. Lancashire, in: Comprehensive Coordination Chemistry, vol. 5 (Eds.: G. Wilkinson, R. D. Gillard, J. A. McCleverty), Pergamon, New York, 1987, p. 800.
- [6] H. V. Rasika Dias, W. Jin, H.-J. Kim, H.-L. Lu, *Inorg. Chem.* 1996, 35, 2317–2328.
- [7] R. Uson, J. Fornies, M. Tomas, I. Ara, J. M. Casas, *Polyhedron* 1992, 11, 1783–1787.
- [8] P. D. Robinson, C. C. Hinckley, M. Matusz, P. A. Kibala, *Polyhedron* 1987, 6, 1695–1698.
- [9] P. Braunstein, D. G. Kelly, Y. Dusausoy, D. Bayeul, M. Lanfranchi, M. Tiripicchio, *Inorg. Chem.* 1994, 33, 233-242.
- [10] [10a] M. R. J. Elsegood, D. A. Tocher, *Polyhedron* **1995**, *14*, 3147–3156. [10b] P. D. Smith, A. H. Wright, *J. Organomet. Chem.* **1998**, *559*, 141–147. [10c] S. Serron, S. P. Nolan, Y. A.

- Abramov, L. Brammer, J. L. Petersen, *Organometallics* **1998**, 17, 104–110. [10d] D. K. Gupta, A. N. Sahay, D. S. Pandey, N. K. Jha, P. Sharma, G. Espinosa, A. Cabrera, M. C. Puerta, P. Valerga, *J. Organomet. Chem.* **1998**, 568, 13–20.
- [11] I. de los Rios, M. J. Tenorio, M. C. Puerta, P. Valerga, *Organometallics* **1998**, *17*, 3356–3363.
- [12] [12a] S. Freitag, R. Herbst-Irmer, L. Lameyer, D. Stalke, Organometallics 1996, 15, 2839–2841. [12b] H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876–881. [12c] G. Bernadinelli, H. D. Flack, Acta Crystallogr., Sect. A 1985, 41, 500.
- [13] [13a] G. Henig, M. Schulz, H. Werner, Chem. Commun. 1997, 2349–2350. [13b] J. Bank, P. Steinert, B. Windmüller, W. Wolfsberger, H. Werner, J. Chem. Soc., Dalton Trans. 1996, 1153–1159. [13c] I. de los Rios, M. J. Tenorio, M. A. J. Tenorio, M. C. Puerta, P. Valerga, J. Organomet. Chem. 1996, 525, 57–64. [13d] I. S. Thorburn, S. J. Rettig, B. R. James, J. Organomet. Chem. 1985, 296, 103–114.
- [14] N. J. Holmes, W. Levason, M. Webster, J. Chem. Soc., Dalton Trans. 1997, 4223–4229.
- [15] A. A. Batista, J. Zukerman-Schpector, O. M. Porcu, S. L. Queiroz, M. P. Araujo, G. Oliva, D. H. F. Souza, *Polyhedron* 1994, 13, 689-693.
- [16] J. W. Faller, B. P. Patel, M. A. Albrizzio, M. Curtis, Organometallics 1999, 18, 3096-3104.
- ^[17] H. Werner, M. Manger, U. Schmidt, M. Laubender, B. Weberndörfer, *Organometallics* **1998**, *17*, 2619–2627.
- [18] M. A. Bennett, A. K. Smith, J. Chem. Soc., Dalton Trans. 1974, 233–241.
- [19] J. Wolf, M. Manger, U. Schmidt, G. Fries, D. Barth, B. Weberndörfer, D. A. Vice, W. D. Jones, H. Werner, J. Chem. Soc., Dalton Trans. 1999, 1867–1875.
- [20] Crystallographic data (excluding structure factors) for the structures of 9 and 10 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-140027 (9) and -140028 (10). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk).
- [21] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- [22] G. M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, 1996.

Received February 8, 2000 [I00040]